PDEs from Monge-Kantorovich Mass Transportation Theory

Luca Petrelli

Math & Computer Science Dept. Mount St Mary's University

Outline

- Monge-Kantorovich mass transportation problem
- Gradient Flow formalism
- Time-step discretization of gradient flows
- Application of theory to nonlinear diffusion problems
- Signed measures

Monge's original problem

move a pile of soil from a deposit to an excavation with minimum amount of work

from "Memoir sur la theorie des deblais et des remblais" - 1781

Mathematical Model of Monge's Problem

 μ^+ , μ^- nonnegative Radon measures on \Re^d

$$\mu^+\left(\Re^d\right) = \mu^-\left(\Re^d\right) < \infty$$

 $s: \Re^d \to \Re^d$ one-to-one mapping rearranging μ^+ into μ^-

$$s_{\#}\mu^{+} = \mu^{-}$$
 $(s_{\#})$

or

$$\int_{X} h(s(x)) d\mu^{+}(x) = \int_{Y} h(y) d\mu^{-}(y) \quad \forall h \in C(\Re^{d}; \Re^{d})$$

for
$$X = spt(\mu^+), Y = spt(\mu^-)$$

c(x,y) cost of moving a unit mass from $x \in \Re^d$ to $y \in \Re^d$

total cost
$$I[s] := \int_{\Re^d} \!\! c(x,s(x)) \, d\mu^+(x)$$

Monge's problem is then to find $s^* \in \mathcal{A}$ (admissable set) such that:

$$I[s^*] = \min_{s \in \mathcal{A}} I[s] \tag{M}$$

with
$$A = \{ s \mid s_{\#}(\mu^{+}) = \mu_{-} \}$$

PROBLEM IS TOO HARD!

Constraint is highly nonlinear!

$$\int_{X} h(s(x)) d\mu^{+}(x) = \int_{Y} h(y) d\mu^{-}(y) \quad \forall h \in C(\Re^{d}; \Re^{d})$$

Hard to identify minimum!

 $\{s_k\}_{k=1}^{\infty} \subset \mathcal{A}$ minimizing sequence such that $I[s_k] \to \inf_{s \in \mathcal{A}} I[s]$ Hard to find $\{s_{k_j}\}$ subsequence such that $s_{k_j} \to s^*$ optimal.

- Classical methods of Calculus of Variation fail!
 - * No terms create compactness for $I[\cdot]$
 - $I[\cdot]$ does not involve gradients hence it can not be shown coercive on any Sobolev space

Kantorovich's relaxation - 1940's

Kantorovich's idea: transform (M) into linear problem

Define:

$$\mathcal{M} := \left\{ \text{prob. meas. } \mu \text{ on } \Re^d \times \Re^d \mid proj_x \mu = \mu^+, proj_y \mu = \mu^- \right\}$$

$$J[\mu] := \int_{\Re^d \times \Re^d} c(x, y) \, d\mu(x, y)$$

Find
$$\mu^* \in \mathcal{M}$$
 such that $J[\mu^*] = \min_{\mu \in \mathcal{M}} J[\mu]$ (K)

Motivation

given $s \in \mathcal{A}$ we can define $\mu \in \mathcal{M}$ as

$$\mu(E) := \mu^{+} \left\{ x \in \Re^{d} | (x, s(x)) \in E \right\} \qquad \left(E \subset \Re^{d} \times \Re^{d}, E \text{ Borel } \right)$$

Problem

 μ^* need not be generated by any one-to-one mapping $\,s\in\mathcal{A}\,$

Solution

only look for "weak" or generalized solutions

Linear programming analogy

(Finite dimensional case)

$$\mu^{+}(x) \longrightarrow \mu_{i}^{+} \qquad \mu^{-}(y) \longrightarrow \mu_{j}^{-}$$

$$\mu(x,y) \longrightarrow \mu_{i,j} \qquad c(x,y) \longrightarrow c_{i,j}$$

$$(i=1,\cdots,n, j=1,\cdots,m)$$

Mass Balance Condition
$$\sum_{i=1}^{n} \mu_i^+ = \sum_{j=1}^{m} \mu_j^- < \infty$$

Constraints

$$\sum_{i=1}^{m} \mu_{i,j} = \mu_i^+, \quad \sum_{i=1}^{n} \mu_{i,j} = \mu_j^-, \quad \mu_{i,j} > 0$$

Linear programming problem minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i,j} \mu_{i,j}$$

maximize
$$\sum_{i=1}^{n} u_i \mu_i^+ + \sum_{j=1}^{m} v_j \mu_j^-$$

subject to
$$u_i + v_j \leq c_{i,j}$$

Kantorovich's Dual Problem

Define:

$$\mathcal{L} := \left\{ (u, v) \middle| u, v : \Re^d \to \Re^+ \text{ continuous }, \ u(x) + v(y) \le c(x, y) \ \left(x, y \in \Re^d \right) \right\}$$
$$K(u, v) := \int_{\Re^d} u(x) \, d\mu^+(x) \, + \, \int_{\Re^d} v(y) \, d\mu^-(y)$$

Then dual problem to (K) is:

Find
$$u^*, v^*$$
 such that $K(u^*, v^*) = \max_{(u,v) \in \mathcal{L}} K(u,v)$

Gradient Flows

To define a gradient flow we need:

- a differentiable manifold ${\cal M}$
- a metric tensor g on \mathcal{M} which makes (\mathcal{M}, g) a Riemannian manifold
- and a functional E on ${\mathcal M}$

Then
$$\frac{du}{dt} = -\operatorname{grad} E(u)$$
 is the gradient flow of E on (\mathcal{M}, g) .

where $g(\operatorname{grad} E, s) = \operatorname{diff} E \cdot s$ for all vector fields s on \mathcal{M} .

Then
$$g_u(\frac{du}{dt}, s) + \text{diff } E_{|u} \cdot s = 0$$
 for all vector fields s along u .

Main property of gradient flows:

energy of system is decreasing along trajectories, i.e.

$$\frac{d}{dt} E(u) = \operatorname{diff} E_{|u} \cdot \frac{du}{dt} = -g_u \left(\frac{du}{dt}, \frac{du}{dt}\right)$$

Partial Differential Equations as gradient flows

Let
$$\mathcal{M} := \left\{ u \geq 0, \text{ measurable, with } \int u \, dx = 1 \right\}$$

define the tangent space to \mathcal{M} as

$$T_u \mathcal{M} := \{ s \text{ measurable, with } \int s \, dx = 0 \}$$

and identify it with $\{p \text{ measurable }\}/\sim$

via the elliptic equation $-\nabla \cdot (u\nabla p) = s$.

Define

$$g_u(s_1,s_2)=\int u
abla p_1\cdot
abla p_2\,dx\left(\equiv\int s_1p_2\,dx
ight)$$
 and $E(u)=\int e(u)\,dx$

Then

$$g_{u}\left(\frac{du}{dt}, s\right) + \operatorname{diff} E_{|u} \cdot s = \int \left(\frac{\partial u}{\partial t} p - \nabla \cdot (u \nabla p) e'(u)\right) dx =$$

$$= \int \left(\frac{\partial u}{\partial t} p + \nabla p \cdot (u \nabla e'(u))\right) dx = \int p \left(\frac{\partial u}{\partial t} - \nabla \cdot (u \nabla e'(u))\right) dx = 0$$

 $\implies \frac{\partial u}{\partial t} = \nabla \cdot (u \nabla e'(u))$

Examples of PDE that can be obtained as Gradient Flows

$e(u) = u \log u$	$\frac{\partial u}{\partial t} = \Delta u$	Heat Equation
$e(u) = u \log u + u V$	$\frac{\partial u}{\partial t} = \Delta u + \nabla \cdot (u \nabla V)$	Fokker-Planck Equation
$e(u) = \frac{1}{m-1} u^m$	$\frac{\partial u}{\partial t} = \Delta u^m$	Porous Medium Equation

Note: equations are only solved in a weak or generalized way.

Important fact! Can implement gradient flow without making explicit use of gradient operator through time-discretization and then passing to the limit as the time step goes to 0.

Jordan, Kinderlehrer and Otto (1998)

$$\frac{\partial u(x,t)}{\partial t} - div(u\nabla\psi(x)) - \Delta u = 0$$

• Otto (1998)
$$\frac{\partial u(x,t)}{\partial t} - \Delta u^2 = 0$$

Kinderlehrer and Walkington (1999)

$$\frac{\partial u(x,t)}{\partial t} - \frac{\partial}{\partial x} \left(u \nabla \psi(x) + K(u)_x \right) = g(x,t)$$

Agueh (2002)

$$\frac{\partial u(x,t)}{\partial t} - div \left\{ u \nabla c^* [\nabla (F'(u) + V(x))] \right\} = 0$$

Petrelli and Tudorascu (2004)

$$\frac{\partial u(x,t)}{\partial t} - \nabla \cdot (u \nabla \Psi(x,t)) - \Delta f(t,u) = g(x,t,u)$$

Time-discretized gradient flows

1. Set up variational principle

Let h > 0 be the time step. Define the sequence $\{u_k^h\}_{k \ge 0}$ recursively as follows: u_0^h is the intial datum u^0 ; given u_{k-1}^h , define u_k^h as the solution of the minimization problem

$$\min_{u \in \mathcal{M}} \left\{ \frac{1}{2h} d\left(u_{k-1}^h, u\right)^2 + E(u) \right\} \tag{P}$$

where d, the Wasserstein metric, is defined as

$$d(\mu^+, \mu^-)^2 := \inf_{\mu \in \mathcal{M}} \left\{ \int_{\Re^d \times \Re^d} |x - y|^2 d\mu(x, y) \right\}$$

i.e. d is the least cost of Monge-Kantorovich mass reallocation of μ^+ to μ^-

for
$$c(x,y) = |x-y|^2$$
.

2. Euler-Lagrange Equations

Use Variation of Domain method to recover E-L eqns.

$$\int \int_{\Re^d \times \Re^d} (y-x) \cdot \xi(y) \, d\mu(x,y) - h \int_{\Re^d} \phi(u_k^h) \, \nabla \cdot \xi \, dx = 0$$
 where
$$\phi(s) =: e'(s)s - e(s)$$

or in Gradient Flow terms:

$$\frac{u_k^h - u_{k-1}^h}{h} = -\operatorname{grad} E(u_k^h)$$

Then recover approximate E-L eqns., i.e.

$$\left| \int_{\Re^d} \left\{ \frac{1}{h} (u_k^h - u_{k-1}^h) \zeta - \phi(u_k^h) \Delta \zeta \right\} dx \right| \le \frac{1}{2h} \|\nabla^2 \zeta\|_{\infty} d(u_k^h, u_{k-1}^h)^2$$

3. Linear time interpolation

Define
$$u^h(x,t) := u^h_k(x)$$
 if $kh \le t < (k+1)h$

After integration in each interval over time we obtain

$$\left| \int_{[0,T] \times \Re^d} \left\{ \frac{1}{h} \left(u^h(x,t+\tau) - u^h(x,t) \right) \zeta - \phi(u^h) \Delta \zeta \right\} dx dt \right| \le C \sum_{k=1}^n d(u_k^h, u_{k-1}^h)^2$$

Necessary inequality:
$$\sum_{k=1}^{n} d(u_k^h, u_{k-1}^h)^2 \leq Ch$$

4. Convergence result as time step h goes to 0

Linear case

Through a Dunford-Pettis like criteria show existence of function u such that, up to a subsequence, $u^h \rightarrow u$ in some L^p space.

Nonlinear case

Stronger convergence is needed, through precompactness result in L^1 . Also needed discrete maximum principle:

$$u^0$$
 bounded $\Rightarrow u^h$ bounded

Then, passing to the limit in the general Euler-Lagrange equation shows that u is a "weak" solution of

$$\frac{\partial u}{\partial t} = \nabla \cdot \left(u \nabla e'(u) \right) \left(\equiv \Delta \phi(u) \right)$$

Nonlinear Diffusion Problems

$$\begin{cases} u_t - \nabla \cdot (u\nabla \Psi(x,t)) - \Delta f(t,u) = g(x,t,u) & \text{in } \Omega \times (0,T), \\ (u\nabla \Psi + \nabla f(t,u)) \cdot \nu_x = 0 & \text{on } \partial \Omega \times (0,T), \\ u(\cdot,0) = u_0 \ge 0 & \text{in } \Omega. \end{cases}$$

Theorem 4. Assume (f1)-(f3), (g1)-(g4) and (Ψ), then the problem (NP) admits a nonnegative essentially bounded weak solution provided that Ω is bounded and convex and the initial data u^0 is nonnegative and essentially bounded.

Hypothesis

- $(u-v)(f(t,u) f(t,v)) \ge c|u-v|^{\omega} \text{ for all } u, v \ge 0,$ (f1)
- $f(\cdot,s)$ are Lipschitz continuous for s in bounded sets (f2)
- \blacksquare $f(t,\cdot)$ differentiable, $\frac{\partial f}{\partial s}$ positive and monotone in time (f3)
- $g(x,\cdot,\cdot)$ nonnegative in $[0,\infty)\times[0,\infty)$ for all $x\in\Re^d$ (g1)
- $g(x,t,u) \leq C(1+u)$ locally uniformly w.r.t. $(x,t), t \geq 0$ (g2)
- $g(x,t,\cdot)$ is continuous on $[0,\infty)$
- $\blacksquare \ \Psi : \mathbb{R}^d \times [0, \infty) \to \mathbb{R} \ \text{ diff.ble and locally Lipschitz in } x \in \mathbb{R}^d \ (\Psi)$

Novelties

• Time-dependent potential $\Psi(\cdot,t)$ and diffusion coefficient $f(t,\cdot)$

• Non homogeneous forcing term g(x, t, u)

 $\blacksquare \ \text{Averaging in time for} \ \Psi, f \ \text{and} \ g \text{, e.g.} \ \ \Psi^k := \frac{1}{h} \int_{kh}^{(k+1)h} \Psi(\cdot,t) \, dt$

■ New variational principle for $v_{k-1} := u_{k-1} + \int_{(k-1)h}^{kh} g(\cdot, t, u_{k-1}) dt$

$$\min_{u \in \mathcal{M}} \left\{ \frac{1}{2h} d\left(v_{k-1}^h, u\right)^2 + E(u) \right\} \tag{P'}$$

New discrete maximum principle

Lemma 5. If $0 \le u^0 \le M_0 < \infty$ a.e. in Ω for large enough M_0 , then there exists $0 < M = M(M_0) < \infty$ such that $0 \le u^h \le M$ a.e. in Ω , for all h > 0 if f satisfies (f3), $\lim_{s \uparrow \infty} \phi_s(t,s) = \infty$ uniformly in t > 0 and for s > 0 large enough we have

$$\eta s \frac{\partial f}{\partial s}(t, \eta s + \eta - 1) - (\eta s + \eta - 1) \frac{\partial f}{\partial s}(t, s)$$

does not change sign for all t > 0, $\eta > 1$, being nonnegative if $\frac{\partial f}{\partial s}(\cdot, s)$ is increasing and nonpositive if decreasing.

New discrete maximum principle

$$u^0$$
 bounded $\Rightarrow u^h$ bounded

Key inequality:
$$v_{k-1}^h \leq U_k := (\phi')^{(-1)} \circ (M_k - \Psi^k) \quad \Rightarrow \quad u_k^h \leq U_k$$

where U_k is the solution of the k-th "homogeneous stationary" equation, i.e.

$$-\nabla \cdot (u\nabla \Psi^k) - \Delta f^k(u) = 0$$

Signed measures

$$\begin{cases} u_t - \nabla \cdot (u\nabla \Psi(x,t)) - \gamma \Delta u = g(x,t) & \text{in } \Omega \times (0,T), \\ (u\nabla \Psi + \gamma \nabla u) \cdot \nu_x = 0 & \text{on } \partial \Omega \times (0,T), \ (SMP) \\ u(\cdot,0) = u_0 & \text{in } \Omega. \end{cases}$$

Let

$$\begin{split} u_{\pm}^k &:= \operatorname{argmin} \left\{ \frac{1}{2} \, d(u, v_{\pm}^{k-1})^2 + h \, F_k(u) \right\} \text{ over all } u \in \mathcal{M}_{v_{\pm}^{k-1}} \\ \text{where } v_{\pm}^k &:= u_{\pm}^k + h \, g_{\pm}^k \text{ and } g_{\pm}^k(x) := \frac{1}{h} \int_{hk}^{h(k+1)} g_{\pm}(x, t) \, dt \end{split}$$

Let
$$u^{(k)} := u_+^k - u_-^k$$
 and define $u^h(x,t) := u^{(k)}(x)$ for $kh \le t < (k+1)h$

$$\sum_{k=1}^{n-1} d(v_+^{k-1}, u_+^k)^2 + \sum_{k=1}^{n-1} d(v_-^{k-1}, u_-^k)^2 \le Ch$$

Theorem 5. Given $u^0 \in L^\infty(\Omega)$ and continuous functions $g, \Psi: \Re^d \times [0, \infty) \to \Re$, such that Ψ satisfies (Ψ) and g is Lipschitz in time uniformly in x, then the problem (SMP) admits a solution $u \in L^\infty(Q)$.

Why use gradient flows with Wasserstein metric?

- We can minimize directly in the weak topology
 Wasserstein metric convergence is equivalent to weak star convergence
 - There are no derivatives in the variational principle this allows for use of discontinuous functions in approximation, for example step functions
 - We can construct new (convex) variational principles for problems like the convection diffusion equation
 - We can recover new maximum principles
 fairly easily from the variational principles